はじめに

有機化合物が有機化合物らしくふるまうのはなぜか？

ペニシリンの発見

1929 A.Flemingが発見
1941 最初の臨床試験
最初の抗生物質
アオカビの一種から産出

電子の波動と電子雲

電子の波動関数

電子の存在する確率
＝電子雲

原子 閉じ込められた電子

s-orbital
p-orbital
d-orbital

結合の形成

Bond Formation
σ bond

結合性軌道

Antibonding orbital

H₂

結合性軌道

炭素の4つの手

C

1s² 2s² 2p²

井戸型ポテンシャルを仮定した一次元モデル

E_n = n²h²/8ml²
炭素の4つの手

C

1s2 2s2 2p2

sp3 hybrid orbital

sp3 混成軌道

+400 kJ/mol

メタン

methane

H

H

H

H

109.5°

共有結合

Covalent bond

共有電子対

Shared pair of electron

半満らし軌道

Half-filled orbital

正四面体

Tetrahedron

sp2 混成軌道

sp2 hybrid orbital

σ結合

π結合

二重結合

double bond

エテン

ethene

π bond - double bond
sp 混成軌道
sp hybrid orbital

パイ結合 – 三重結合
π bond - triple bond

エチン (アセチレン)
ethyne

非局在化したパイ結合
delocalized π-bond

色素の例 インジゴ
Dye Indigo

色 画像情報を伝えるもの
color
結合の分極
双極子 dipole

• 双極子モーメント μ

$\mu = \sum q_ir_i$

永久双極子
permanent dipole

誘起効果
Inductive effect

まとめ
有機化合物をつくる炭素原子の結合
炭素原子のsp混成軌道による4本の足
σ 結合とπ 結合
π 結合とその非局在化による安定・電子の共有空間の広がり
結合の分極と誘起効果

はじめに

分子 -2 Molecule -2

前回まで
• 炭素の結合（σとπ）
• 炭素と他の原子との結合による電子の偏り

有機化合物が有機化合物らしくふるまうのはなぜか？
非共有電子対

非共有電子対の働き

周期表と有機化学 主役

結合の強さと長さ

結合エネルギーと結合の長さ

結合エネルギーと結合の長さ
結合エネルギーと結合の長さ

<table>
<thead>
<tr>
<th>結合距離 (nm)</th>
<th>結合エネルギー (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>0.154</td>
</tr>
<tr>
<td>C=C</td>
<td>0.135</td>
</tr>
<tr>
<td>C-O</td>
<td>0.143</td>
</tr>
<tr>
<td>C=O</td>
<td>0.122</td>
</tr>
</tbody>
</table>

C=C と C=O の反応のちがい

結合距離 結合エネルギー

σ結合 π結合

E + C=C → E + Nu

E + C=O → E + Nu

立体化学

電子対間の電気的反発

構造異性体

Constitutional isomer (Structural isomer)

構造異性体

シス・トランス異性体

cis/trans isomer

鏡像異性体

enantiomer

シス・トランス異性体

二重結合がカントンに回らないため、二重結合の炭素にそれぞれ異なる置換基があると構造のちがいが生じる。化学的性質は少し異なる。

鏡像異性体

キラル炭素をもつ鏡像の関係にある異性体。化学的性質は同じだが、集合体として大きなちがいとなり、生化学的には重要。
鏡像異性体

鏡像異性体

らせんの要素がある

alanine

Morphine

分子間引力

・ 双極子間引力
・ van der Waals 力
・ 水素結合
・ 溶解

双極子間引力

・ 永久双極子間の電気的引力

van der Waals force

・ 永久双極子をもたない分子間にも存在する
引力: 分散力: 瞬間的な電子の偏りに起因 (J. D. van der Waals 1837-1923)
van der Waals force
生体との関わり

水素結合
Hydrogen bond
水素結合エネルギー
10 ~ 40 kJ mol⁻¹

水素結合
Hydrogen bond

Double helix
Organism

溶解度
Solubility
Like dissolved like

溶解度
Solubility
Like dissolved like
まとめ
有機化合物をつくる分子の構造と相互作用

- 非共有電子対 lone pair
- 結合の強さと化学反応
- 立体化学 構造異性体・シストランス異性体
- 鏡像異性体
- 分子間力 双極子間引力・van der Waals force
- 水素結合
- 溶解度 溶媒分子との分子間力