List of publications related to Cu surface area š



  1. Efficient conversion of glycerol into 1,2-propanediol over Cu/SiO2 catalyst prepared through impregnation assisted with crown etherš
    S. Sasaki, E. Kurniawan, Y. Yamada, S. Sato*
    Chem. Lett. 53 (2024) upae037. Accepted on Feb. 19, 2024. DOI: 10.1093/chemle/upae037
  2. Vapor-phase dehydration of glycerol to acetol over Cu/SiO2 prepared with organic additivesš
    S. Sasaki, E. Kurniawan, K. Sato, K. Matsusaka, T. Kojima, T. Hara, Y. Yamada, S. Sato*
    Appl. Catal. A 671 (2024) 119561. Accepted on Jan. 4, 2024. DOI: 10.1016/j.apcata.2024.119561
    
  3. Vapor-phase Dehydrogenation of 3-Methyl-2-butanol over Silica-supported Cu Catalyst Prepared by Mannitol-assisted Impregnationš
    K. Sato, E. Kurniawan, S. Sasaki, K. Matsusaka, Y. Yamada, S. Sato*
    Bull. Chem. Soc. Jpn 97 (2024) uoae001. Accepted on Dec. 29, 2023. DOI: 10.1093/bulcsj/uoae001
    
  4. Chemoselective vapor-phase hydrogenation of 6-methyl-5-hepten-2-one over Cu/SiO2 catalystš
    E. Kurniawan, K. Matsusaka, K. Sato, S. Sasaki, K. Nakazono, Y. Yamada, S. Sato*
    Chem. Lett. 53 (2024) upad019. Accepted on Nov 13, 2023. DOI: 10.1093/chemle/upad019
  5. Vapor-phase oxidant-free dehydrogenation of 2,3- and 1,4-butanediol over Cu/SiO2 catalyst prepared by crown-ether-assisted impregnationš
    E. Kurniawan, S. Hosaka, M. Kobata, Y. Yamada, S. Sato*
    Chemistry 5 (2023) 406-421. Accepted on Feb. 25, 2023. DOI: 10.3390/chemistry5010030
  6. Vapor-phase dehydrogenation of 1-decanol to decanal over Cu/SiO2 catalyst prepared by organic additives-assisted impregnationš
    S. Hosaka, E. Kurniawan, Y. Yamada, S. Sato*
    Appl. Catal. A 653 (2023) 119079. Accepted on Jan. 31, 2023. DOI: 10.1016/j.apcata.2023.119079
    Corrigendum to "Vapor-phase dehydrogenation of 1-decanol to decanal over Cu/SiO2 catalyst prepared by organic additives-assisted impregnation" [Appl. Catal. A: Gen. 653 (2023) 119079]š
    S. Hosaka, E. Kurniawan, Y. Yamada, S. Sato*
    Appl. Catal. A 664 (2023) 119328. Acailable online July. 13, 2023. DOI: 10.1016/j.apcata.2023.119328
    
  7. Selective vapor-phase hydrogenation of furfural to furfuryl alcohol over Cu/silica catalystsš
    E. Kurniawan, Tetsugaku Hayashi, S. Hosaka, Y. Yamada, S. Sato*
    Bull. Chem. Soc. Jpn 96 (2023) 8-15. Accepted on Nov. 24, 2022. DOI: 10.1246/bcsj.20220285
  8. Hydrodeoxygenation of 1,2-Decanediol to Produce 1-Decanol over Cu/SiO2-Al2O3 Catalyst
    Yue Li, Huan Ren, D. Sun*, X. Zhao*, S. Sato*
    Appl. Catal. A 647 (2022) 118905. Accepted on Oct. 9, 2022. DOI: 10.1016/j.apcata.2022.118905
    
  9. Hydrogenation of biomass-derived ƒÁ-valerolactone to form 1,4-pentanediol over Co/ZrO2 catalyst
    Yue Zhu, Yue Li, Shipeng Zhao, Ran Jing, Heqian Zhang, D. Sun*, S. Sato*
    Chem. Lett. 51 (2022) 395-398. Accepted on Jan. 23, 2022.  DOI: 10.1246/cl.210802
    
  10. Vapor-phase hydrogenation of levulinic acid to ƒÁ-valerolactone over Cu-Ni alloy catalysts
    D. Yanase, T. Hara, F. Sato, Y. Yamada, S. Sato*
    Appl. Catal. A: General 616 (2021) 118093. Accepted on March 9, 2021. DOI: 10.1016/j.apcata.2021.118093
  11. Efficient formation of ƒÁ-valerolactone in the vapor-phase hydrogenation of levulinic acid over Cu-Co/alumina catalyst
    D. Yanase, R. Yoshida, S. Kanazawa, Y. Yamada, S. Sato*
    Catal. Commun. 139 (2020) 105967. Accepted on Feb. 19, 2020. DOI: 10.1016/j.catcom.2020.105967
    
  12. Selective hydrogenation of ƒÁ-valerolactone to 2-methyltetrahydrofuran over Cu/Al2O3 catalyst
    D. Sun, T. Saito, S. Otsuka, T. Ozawa, Y. Yamada, S. Sato*
    Appl. Catal. A: General 590 (2020) 117309. Accepted on Oct. 17, 2019. DOI: 10.1016/j.apcata.2019.117309
  13. Advantages of using Cu/SiO2 catalyst for vapor-phase dehydrogenation of 1-decanol into decanal
    D. Sun, T. Misu, Y. Yamada, S. Sato*
    Appl. Catal. A: General 582 (2019) 117109. Accepted on June 10, 2019. DOI: 10.1016/j.apcata.2019.06.007
    
  14. Stable Cu-Ni/SiO2 catalysts prepared by using citric acid-assisted impregnation for vapor-phase hydrogenation of levulinic acid
    R. Yoshida, D. Sun, Y. Yamada, S. Sato*
    Mol. Catal. 454 (2018) 70-76. Accepted on May 16, 2018. DOI: 10.1016/j.mcat.2018.05.018
    
  15. Hydrogenation of ƒÁ-valerolactone to 1,4-pentanediol in a continuous flow reactor 
    D. Sun, T. Saito, Y. Yamada, Xin Chen, S. Sato*
    Appl. Catal. A: General 542 (2017) 289-295. Accepted on May 28, 2017. DOI: 10.1016/j.apcata.2017.05.034 
  16. Vapor-phase hydrogenation of levulinic acid and methyl levulinate to ƒÁ-valerolactone over non-noble metal-based catalysts 
    D. Sun, A. Ohkubo, K. Asami, T. Katori, Y. Yamada, S. Sato*
    Mol. Catal. 437 (2017) 105-113. Accepted on May 9, 2017. DOI: 10.1016/j.mcat.2017.05.009 
  17. Vapor-phase hydrogenation of levulinic acid to ƒÁ-valerolactone over Cu-Ni bimetallic catalysts
    R. Yoshida, D. Sun, Y. Yamada, S. Sato*, Graham J. Hutchings
    Catal. Commun. 97 (2017) 79-82. Accepted on Apr. 11, 2017. DOI: 10.1016/j.catcom.2017.04.018 
    
  18. Efficient production of propylene in the catalytic conversion of glycerol
    D. Sun, Y. Yamada, S. Sato*
    Appl. Catal. B: Environmental 174 (2015) 13-20. Accepted on Feb. 20, 2015.
  19. Effect of Ag Loading on Cu/Al2O3 Catalyst in the Production of 1,2-Propanediol from Glycerol
    D. Sun, Y. Yamada, S. Sato*
    Appl. Catal. A: General 475 (2014) 63-68. 
  20. Dehydration-hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure
    M. Akiyama, S. Sato*, R. Takahashi, K. Inui, M. Yokota 
    Appl. Catal. A 371 (2009) 60-66. 
  21. Selective Conversion of Glycerol into 1,2-Propanediol at Ambient Hydrogen Pressure
    S. Sato*, M. Akiyama, K. Inui, M. Yokota
    Chem. Lett. 38 (2009) 560-561.
  22. Vapor-phase reaction of polyols over copper catalystsš
    S. Sato*, M. Akiyama, R. Takahashi, T. Hara, K. Inui, M. Yokota
    Appl. Catal. A, 347 (2008) 186-191. 
  23. Dehydrogenation of 1,3-butanediol over Cu-based catalystš
    S. Sato*, R. Takahashi, H. Fukuda, K. Inui
    J. Mol. Catal. A: Chemical, 272 (2007) 164-168. 
  24. Synthesis of alfa-hydroxyketones from 1,2-diols over Cu-based catalystš
    S. Sato*, R. Takahashi, T. Sodesawa, H. Fukuda, T. Sekine, E. Tsukuda
    Catal. Commun., 6 (2005) 607-610.
  25. Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst
    K. Inui*, T. Kurabayashi,  S. Sato*, N. Ichikawa
    J. Mol. Catal. A: Chemical, 216 (2004) 147-156. 
  26. Dehydrogenative cyclization of 1,4-butanedol over copper-based catalystš
    N. Ichikawa,  S. Sato*, R. Takahashi, T. Sodesawa, K. Inui
    J. Mol. Catal. A: Chemical, 212 (2004) 197-203.
    
  27. Direct Synthesis of Ethyl Acetate from Ethanol over Cu-Zn-Zr-Al-O catalystš
    K. Inui*, T. Kurabayashi,  S. Sato
    Appl. Catal. A General, 237 (2002) 53-61.
  28. Direct Synthesis of Ethyl Acetate from Ethanol Carried out under Pressureš
    K. Inui*, T. Kurabayashi,  S. Sato
    J. Catal., 212 (2002) 207-215.
    
  29. Distinction between Surface and Bulk Oxidation of Cu through N2O Decompositionš
    S. Sato*, R. Takahashi, T. Sodesawa, Ken-ichi Yuma, Yumiko Obata
    J. Catal., 196 (2000) 195-199. 

    asterisk: Corresponding Author
    May 12, 2024
    Satoshi Sato, Prof. Home page 
    Chiba University