
CHAPTER 1

Experimental Inorganic Chemistry:
A History of Dazzling Color!

The starting point is the study of color and its effects on men [Wassily Kandinsky (1912),

Concerning the Spiritual in Art]

EARLY DEVELOPMENTS IN INORGANIC CHEMISTRY1–4

Ask any inorganic chemist just why he or she entered the field and more often than not, the

answer will be “color!” People have long been captivated by the magnificent colors of inor-

ganic compounds. As early as 15,000 BC, cave painters used iron oxides for sources of

yellows and reds, aluminum silicates for greens, and manganese oxide for browns. By

3000 BC, Egyptian and Syrian artisans and jewelers were staining metal surfaces with inor-

ganic salts derived from ground minerals and alloys. The colors obtained depended mostly

on the types of transition metals contained in the minerals and on their combinations. Soon

synthetic pigments were developed as well. One of the first, Egyptian Blue, CaCuSi4O10,

was prepared by heating malachite/sand (quartz or silica) mixtures to temperatures of

800–900 8C. Later in the fifteenth to eighteenth centuries, metal-containing pigments

such as copper carbonate and the brilliant ferric ferrocyanide coordination complex, Prus-

sian Blue, Fe4[Fe(CN)6]3, were synthesized for use in the textile industry (Fig. 1.1). Iron

oxides, lead chromates, and the ubiquitous white pigment, titanium dioxide, are just a

few of the many inorganic compounds that are still important in this industry today.

The beauty of inorganic chemistry lies in the fact that minute changes in a metal ion

environment induce dramatic changes in color. The fact that easily noted changes in

color signify chemical and sometimes physical change was critical to the development

of the field of chemistry. Even before the establishment of the modern science of

chemistry, early metallurgists and alchemists relied on color change as a positive step

toward what they believed was the transformation of base metals, primarily into gold.

They documented procedures that included the manipulation of mixtures of lead, tin,

copper, and iron through a series of black, white, yellow, and purple stages. During the

sixteenth and seventeenth centuries, careful quantitative studies of color change brought

forth new views on the nature of matter that gave birth to modern chemistry. The

heating of mercury metal in the presence of air, for example, forms a red calx (mercury
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oxide), which can subsequently be returned to the original metal by heating. In 1778,

Antoine Lavoisier showed that this color change was caused by the addition and

removal of oxygen at the metal center. In 1788, French chemist Joseph-Louis Proust

argued that colors in alloys were a result of constituents in fixed and definite proportions,

leading to his law of definite proportions. Between 1790 and 1830 geologists discovered a

vast number of naturally occuring inorganic mineral types; and Swedish chemist Jöns

Jakob Berzelius alone prepared, purified and analyzed over 2000 inorganic compounds

in just 10 years. A few representative inorganic compounds and their colors are given

in Table 1.1. Notice how switching the metal from copper to gold in the metal hydroxide

[M(OH)] compounds changes the observed color from yellow to dark violet. Likewise,

replacing iodides in the yellow PbI2 with oxygen or sulfur changes the colors to brown

or black, respectively. The colors of these common naturally occurring minerals are

earth tones. Chemists have produced their most vibrant colors, however, by manipulating

the metal ion environment in compounds known as complex ions.

COMPLEX IONS3,7,8

Although Prussian Blue, synthesized in 1704, was the first officially recognized metal

coordination complex to be made, discovery of this group of transition metal complex

ions is often credited to Taessert, who in 1798 prepared the first known cobalt ammonia

salts. His work inspired a revolution in inorganic chemistry. At the turn of the nineteenth

century, amidst the flourishing developments of organic chemistry, the striking colors

Figure 1.1 Vials of different metal-containing compounds and complexes.

TABLE 1.1 Some Inorganic Compounds and Their Colors

Compound Color Compound Color

Co(OH)3 Black PbI2 Yellow

Cu(OH) Yellow PbO2 Brown

Cu2O Red PbS Black

Cu2S Black HgO Yellow or red

Au(OH)3 Yellow-brown Hg2O Brown-black

AuOH Dark violet Hg2I2 Yellow

Fe(OH)3 Red-brown HgICl Red

Fe2S3 Dark green Ag3AsO4 Dark red

FeS Black Ag3AsO3 Yellow
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of the metal ammines and their unusual characteristics† piqued the interest of chemists,

resulting in the synthesis of a plethora of metal ammine complexes over the next 50

years. In 1852, French chemist Edmond Frémy put forth a color-based naming scheme

for these complexes, shown in Table 1.2. Unfortunately, this scheme has its limitations;

for example, the cobalt complexes, Co(NO2)3 . 4NH3 and CoCl3 . 6NH3, though

both are yellow, bear unrelated names. To further this scheme of confusion,

Co(NO2)3 . 4NH3 can be either yellow or brown. One can quickly see the shortcomings

of Frémy’s color-based nomenclature.

As new complex ions were synthesized, several bonding theories were postulated and

rejected. The two most convincing theories, “the Blomstrand–Jorgensen chain theory”

and “coordination theory” proposed by Alfred Werner, were debated extensively

(a subject taken up in detail in Chapter 2) and it was coordination theory that eventually

proved to be correct, winning Werner the Nobel Prize in 1913.

Thanks to Werner, the nature of complex ions is no longer as complex as it used to

seem. A complex ion is a species that contains a central metal ion (M), surrounded by

ions or molecules, called ligands (L) (Fig. 1.2). Although partial substitution may

take place at the metal center, the complex tends to retain its identity in solution.

Werner pointed out that complex ions, now termed metal complexes, have two valences:

the primary valence is the charge of the metal ion itself (the oxidation state of the metal,

nþ) and the secondary valence is the number of ligands bound to the metal. Werner noted

that, unlike carbon, metal complexes can possess a maximum number of bound ligands

beyond their primary valency. The total charge on the metal complex is the sum of the

metal ion charge and the ligand charges. If the overall charge is not zero, it is balanced

by counterions to give an overall neutral species. Although the early ambiguous formu-

lations for the cobalt ammines in Table 1.2 could be found in texts as late as the

mid-1950s, they have since been replaced by modern formulas to reflect the nature of

bonding. As an example, consider the yellow croceo complex, Co(NO2)3 . 4NH3. The

modern formula, trans-[Co(NH3)4(NO2)2]NO2, gives the spatial relationship of the

atoms in this octahedral complex: the complex cation consists of a cobalt ion surrounded

by four NH3 molecules in one plane and two NO2
2 ions situated 1808 apart from each other

(trans terminology). Because the counterion balancing the charge on the cation is NO2
2, the

overall charge on the complex cation is þ1; thus the cobalt center contributes þ3 charge.

The structure of this complex is shown in Figure 1.3(a). The cis form of the complex

TABLE 1.2 Color Names Given by Edmond Frémy (Adapted from Brock3)

Compound Color Original Name Formula

Co(NO2)3 . 4NH3 Brown Flavo complex cis-[Co(NH3)4(NO2)2]NO2

Co(NO2)3 . 4NH3 Yellow Croceo complex trans-[Co(NH3)4(NO2)2]NO2

CoCl3 . 6NH3 Yellow Luteo complex [Co(NH3)6]Cl3
CoCl(H2O) . 5NH3 Rose-red Roseo complex [Co(NH3)5(H2O)]Cl3
CoCl3 . 5NH3 Purple Purpureo complex [Co(NH3)5Cl]Cl2
CoCl3 . 4NH3 Green Praseo complex trans-[Co(NH3)4Cl2]Cl

CoCl3 . 4NH3 Violet Violeto complex cis-[Co(NH3)4Cl2]Cl

†Chemists found it odd that two stable compounds, CoCl3 and NH3, with seemingly saturated valences, combined

to form a new stable compound. This reactivity was very different from that of carbon.
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[Fig. 1.3(b)] places the coordinating NO2
2 ligands orthogonal (908 angles) to each other.

This seemingly simple change in ligand arrangement results in a color change from yellow

to brown. Color change resulting from such geometric isomerism was critical to Werner’s

first predictions of metal complex molecular geometry (Chapter 2).

Ligands bind to the metal center through electron pair donation [Fig. 1.3(b)]. This

type of coordinate bonding was first put forth in 1922 by Maurice L. Huggins, an under-

graduate student of Gilbert N. Lewis, and was expanded upon by Thomas M. Lowry. In

1927, Nevil V. Sidgwick applied coordinate bonding to metal complexes. Ligands,

then, are Lewis bases (electron pair donors) and metals are Lewis acids (electron pair

acceptors). This bond type [Fig. 1.3(b)] gives metal complexes their name, coordination

complexes, which was a term actually first used by Werner.

The ligand number—or coordination number—varies depending on the nature of the

metal ion, as well as on the nature of the ligand. With a given number of ligands, each

metal complex adopts one of a number of energetically favorable geometries. A metal

complex of coordination number 6, for example, adopts an octahedral shape. The

octahedral configuration for a series of hexammonium compounds, first predicted by

Werner, was confirmed by X-ray analysis by the early 1920s. The topic of metal

complex geometry is explored in Chapter 3 using the geometrically versatile nickel(II) ion.

The robust nature of Werner’s original cobalt(III) ammine complexes enabled him to

purify, isolate and study the solution chemistry of these complexes. (Robust complexes

have a complex ion—metal and the primary coordination sphere ligands—that remains

as one entity in solution.) The ability of a metal complex to resist decomposition by

water or dilute acids was recognized early on; it is still a qualitative measure of stability

today. One of the first chemists to quantitatively measure metal complex stabilities (stab-

ility constants) was Danish chemist Jannik Bjerrum, who published his Ph.D. dissertation

on the formation of metal ammines in aqueous solution in 1940. His work suggested

that important factors governing stability and coordination number include ligand polariz-

ability and structure, and metal ion electron configuration and size. It was understood that

electronegativity differences between the electropositive metal and its electron donating

ligand led to an unequal sharing of electrons and a polar covalent bond, yet in his day,

the extent of electron sharing was still unknown.

Figure 1.2 (a) Schematic of the octahedral complex and (b) the M–L coordinate bond.

Figure 1.3 Yellow trans- (a) and brown cis-(b) [Co(NH3)4(NO2)2]NO2.
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