English/Japanese
Home
Publications
Presentation
Members
Contact

Brief summary of publications (Carbon Webinar on 13-14 Dec 2021)

Awards for Researches
2023.11.29 Yasuhiro Yamada, Academic Award, The Carbon Society of Japan
Awarded research title "Structural control and precise structural analysis of carbon materials"


2016.10.27. Yasuhiro Yamada, Advanced Science Award, Chiba University, Japan
Awarded research title "Analyses of defective structures in carbon materials"



2016.7.14. Yasuhiro Yamada, The Brian Kelly Award 2016, The British Carbon Group, Royal Society of Chemistry
Awarded research title "Review for analyses of defects in carbon materials using X-ray photoelectron spectroscopy and computation"


2014.12.9 Yasuhiro Yamada, Research Encouragement Prize, The Carbon Society of Japan
Awarded research title "Analysis of defective structures of graphene using X-ray photoelectron spectroscopy"


Publications
GOOGLE Scholar Citation:
https://scholar.google.co.jp/citations?user=XTMvkrYAAAAJ&hl=ja

2024
136) Y. Negishi, S. Sato, Y. Yamada*, Toward Selective Bottom-Up Synthesis of Carbon Materials with a Reactive C-H Adjacent to Pyridinic Nitrogen (N-Solo) from Brominated Two-Fused-Ring Aromatics: Development of Screening Technique, SSRN.
Available at SSRN:http://ssrn.com/abstract=4678297

135) A. Sato, K. Gotoh, S. Sato, Y. Yamada*, Toward strategical bottom-up synthesis of carbon materials with exceptionally high pyrrolic-nitrogen content: development of screening techniques, Carbon, 222 (2024) 118904.
Available at SSRN:http://ssrn.com/abstract=4621324
https://doi.org/10.1016/j.carbon.2024.118904

Reprinted with permission. Copyright (2024) Elsevier.

134) A. Sato, M. Nakamura, S. Sato, Y. Yamada*, Bottom-up synthesis of carbon materials with an exceptionally high percentage of pentagons and heptagons using brominated precursors, Carbon Rep. accepted. (accepted as of 14th of March, 2024)
https://doi.org/10.7209/carbon.030203

133) Y. Negishi, S. Sato, Y. Yamada*, Polymerization of brominated aromatic compounds within a metal-organic framework toward bottom-up synthesis of graphene nanoribbons with either pyridinic or tertiary nitrogen, Carbon Rep. accepted. (accepted as of 14th of March, 2024)
https://doi.org/10.7209/carbon.030202

132) T. Inaba, E. Kurniawan, T. Hara, Y. Yamada, S. Sato*, Catalytic dehydration of 1,2-butanediol to 1,3-butadiene over CsH2PO4/SiO2, Bull. Chem. Soc. Jpn., accepted. (accepted as of 25th of March, 2024)

131) S. Sasaki, E. Kurniawan, Y. Yamada, S. Sato*, Efficient conversion of glycerol into 1,2-propanediol over Cu/SiO2 catalyst prepared through impregnation assisted with crown ether, Chem. Lett. in press (2024) upae037.
https://doi.org/10.1093/chemle/upae037

130) S. Sasaki, E. Kurniawan, K. Sato, K. Matsusaka, T. Kojima, T. Hara, Y. Yamada, S. Sato*, Vapor-phase dehydration of glycerol to acetol over Cu/SiO2 prepared with organic additives, Appl. Catal. A Gen. 671 (2024) 119561.
https://doi.org/10.1016/j.apcata.2024.119561

129) K. Sato, E. Kurniawan, S. Sasaki, K. Matsusaka, Y. Yamada, S. Sato*, Vapor-phase dehydrogenation of 3-methyl-2-butanol over silica-supported Cu catalyst prepared by mannitol-assisted impregnation, Bull. Chem. Soc. Jpn. in press. (2024) uoae001. (Published: 10 January 2024) https://doi.org/10.1093/bulcsj/uoae001

128) R. Kobayashi, E. Kurniawan, T. Hara, Y. Yamada, S. Sato*, Hydrothermally fabricated Yb2O3 catalyst for vapor-phase dehydration of 3-methyl-1,3-butanediol to isoprene, Appl. Catal. A Gen. 670 (2024) 119551.
https://doi.org/10.1016/j.apcata.2023.119551

127) E. Kurniawan, K. Matsusaka, K. Sato, S. Sasaki, K. Nakazono, Y. Yamada, S. Sato*, Chemoselective vapor-phase hydrogenation of 6-methyl-5-hepten-2-one over Cu/SiO2 catalyst prepared by organic additive-assisted impregnation, Chem. Lett. 53 (2024) upad019.
https://doi.org/10.1093/chemle/upad019

126) Y. Li, E. Kurniawan, F. Sato, T. Hara, Y. Yamada, S. Sato*, Amorphous silica-alumina modified with silver as an efficient catalyst for vapor-phase dehydration of 1,3-butanediol to 1,3-butadiene, Appl. Catal. A Gen. 669 (2024) 119493.
https://doi.org/10.1016/j.apcata.2023.119493

125) E. Kurniawan, N. Sannodo, Y. Negishi, H. Kobayashi, Y. Yamada, S. Sato*, Vapor-phase deoxydehydration of 2,3-butanediol to 2-butene over MoO3/SiO2 catalyst, Bull. Chem. Soc. Jpn. 97 (2024) uoad005.
https://doi.org/10.1093/bulcsj/uoad005


2023
124) I. Kuno, A. Sato, S. Gohda, S. Sato, Y. Yamada*, Bottom-up synthesis of carbon materials with an exceptionally high percentage of pentagons or tertiary nitrogen by brominating precursors, Carbon 213 (2023) 118188.
https://doi.org/10.1016/j.carbon.2023.118188
Available at SSRN:http://ssrn.com/abstract=4347943

Reprinted with permission. Copyright (2023) Elsevier.

123) N. Ohtsubo, S. Gohda, K. Gotoh, S. Sato, Y. Yamada*, Bottom-up synthesis of pyridinic nitrogen-containing carbon materials with reactive C-H from two-ring aromatics, Carbon 207 (2023) 270-291.
https://doi.org/10.1016/j.carbon.2023.02.019
Available at SSRN:http://ssrn.com/abstract=4271088

Reprinted with permission. Copyright (2023) Elsevier.

122) Y. Yamada*, H. Sato, S. Gohda, T. Taguchi, S. Sato, Toward strategical bottom-up synthesis of carbon materials with exceptionally high basal-nitrogen content: development of screening techniques, Carbon 203 (2023) 498-522.
https://doi.org/10.1016/j.carbon.2022.11.043
Available at SSRN:http://dx.doi.org/10.2139/ssrn.4210347

Reprinted with permission. Copyright (2023) Elsevier.

121) H. Jeong, S. Park, J. Yang, H. M. Lee, S. An, Y. Yamada, J. Kim*, Spectroscopic distinction of carbon nanobelts and nanohoops, Carbon 201 (2023) 829-836.
https://doi.org/10.1016/j.carbon.2022.09.063
Available at SSRN:https://ssrn.com/abstract=4191318

120) N. Ohtsubo, S. Gohda, S. Sato, Y. Yamada*, Bottom-up synthesis of pyridinic-nitrogen doped carbon materials from brominated two-fused-ring aromatics at low carbonization temperatures, Carbon Rep. 2 (2023) 97-113.
https://doi.org/10.7209/carbon.020202

119) T. Taguchi, S. Gohda, K. Gotoh, S. Sato, Y. Yamada*, Synthesis of carbon materials with extremely high pyridinic-nitrogen content and controlled edges from aromatic compounds with highly symmetric skeletons, Carbon Lett. 33 (2023) 1279-1301.
https://doi.org/10.1007/s42823-023-00482-7
Free for view only.--> "Synthesis of carbon materials with extremely high pyridinic-nitrogen content and controlled edges from aromatic compounds with highly symmetric skeletons"

118) S. Gohda*, H. Ono, Y. Yamada, Water-soluble photoluminescent carbon dots prepared from phloroglucinol by catalyst- and solvent-free reaction, Carbon Lett. 33 (2023) 467-475.
https://doi.org/10.1007/s42823-022-00436-5
Free for view only.--> "Water-soluble photoluminescent carbon dots prepared from phloroglucinol by catalyst- and solvent-free reaction"

117) S. Park, J. Yang, H. M. Lee, Y. S. Lee, Y. K. Lee, Y. Yamada, N. Lee*, J. Kim*, Effect of the position of amine groups on the CO2, CH4, and H2 adsorption performance of graphene nanoflakes, Ind. Eng. Chem. Res. 62 (2023) 5230-5240. https://pubs.acs.org/doi/10.1021/acs.iecr.2c04185

116) E. Kurniawan, L. Yu, R. Kobayashi, T. Hara, Y. Yamada, S. Sato*, Vapor-phase dehydration of 1,3-butanediol to 1,3-butadiene over WO3/SiO2 catalyst, Appl. Catal. A Gen. 666 (2023) 119408. https://doi.org/10.1016/j.apcata.2023.119408

115) E. Kurniawan, S. Hosaka, M. Kobata, Y. Yamada, S. Sato*, Vapor-phase oxidant-free dehydrogenation of 2,3- and 1,4-butanediol over Cu/SiO2 catalyst prepared by crown-ether-assisted impregnation, Chemistry 5 (2023) 406-421.
https://doi.org/10.3390/chemistry5010030

114) S. Hosaka, E. Kurniawan, Y. Yamada, S. Sato*, Vapor-phase dehydrogenation of 1-decanol to decanal over Cu/SiO2 catalyst prepared by organic additives-assisted impregnation, Appl. Catal. A Gen. 653 (2023) 119079.
https://doi.org/10.1016/j.apcata.2023.119079

113) L. Yu, E. Kurniawan, T. Ozawa, H. Kobayashi, Y. Yamada, S. Sato*, Catalytic dehydration of crotyl alcohol into 1,3-butadiene over silica-supported metal oxides: Mechanistic features, Mol. Catal. 537 (2023) 112939.
https://doi.org/10.1016/j.mcat.2023.112939

112) R. Kobayashi, E. Kurniawan, Y. Yamada, S. Sato*, Selective formation of isoprene via dehydration of 3-methyl-1,3-butanediol over Y2Zr2O7 catalyst, Mol. Catal. 535 (2023) 112854.
https://doi.org/10.1016/j.mcat.2022.112854

2022
111) Y. Yamada*, H. Tanaka, Y. Tanaka, S. Kubo, T. Taguchi, S. Sato, Toward strategical bottom-up synthesis of carbon materials with exceptionally high pyridinic-nitrogen content: development of screening techniques, Carbon 198 (2022) 411-434.
https://doi.org/10.1016/j.carbon.2022.06.069
Reprinted with permission. Copyright (2022) Elsevier.

110) K. Mori*, J. Kim, S. Kubo, Y. Yamada*, Effects of molecular shapes, molecular weight, and types of edges on peak positions of C1s X-ray photoelectron spectra of graphene-related materials and model compounds, J. Mater. Sci. 57 (2022) 15789-15808.
https://doi.org/10.1007/s10853-022-07599-6
Free for view only.--> "Effects of molecular shapes, molecular weight, and types of edges on peak positions of C1s X-ray photoelectron spectra of graphene-related materials and model compounds"

109) R. Kawai, Y. Yamada*, S. Gohda, S. Sato, Bottom-up synthesis of carbon materials with high pyridinic-nitrogen content from dibenzacridine isomers with zigzag and armchair edges, J. Mater. Sci. 57 (2022) 7503-7530.
https://doi.org/10.1007/s10853-022-07104-z
Free for view only.--> "Bottom-up synthesis of carbon materials with high pyridinic-nitrogen content from dibenzacridine isomers with zigzag and armchair edges"

108) E. Kurniawan, T. Yoshinari, Y. Yamada, S. Sato*, Vapor-phase intramolecular aldol condensation of 2,5-hexanedione over calcium hydroxyapatite catalyst, Appl. Catal. A: Gen. 644 (2022) 118812.

107) A. Matsuda, F. Sato, Y. Yamada, S. Sato*, Efficient production of 1,3-butadiene from 1,4-butanediol over Yb2O3 catalyst prepared through hydrothermal aging, Bull. Chem. Soc. Jpn. 95 (2022) 506-512.

106) K. Nakazono, S. Hosaka, Y. Yamada, S. Sato*, Highly active Ni/SiO2 catalyst prepared through citric acid-assisted impregnation for the hydrogenation of acetoin to 2,3-butanediol, Bull. Chem. Soc. Jpn. 95 (2022) 443-450.

2021
105) Y. Yamada*, H. Tanaka, S. Kubo, S. Sato, Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy, Carbon 185 (2021) 342-367.
https://doi.org/10.1016/j.carbon.2021.08.085
Degree of carbonization can be estimated from these peak positions.

Reprinted with permission. Copyright (2021) Elsevier.

104) J. Kim*, N. Lee, D. Y. Choi, D. Y. Kim, R. Kawai, Y. Yamada, Pentagons and heptagons on edges of graphene nanoflakes analyzed by X-ray photoelectron and Raman spectroscopies, J. Phys. Chem. Lett. 12 (2021) 9955-9962. Selected as a Front Cover
https://doi.org/10.1021/acs.jpclett.1c02524


103) T. Kato, Y. Yamada*, Y. Nishikawa, H. Ishikawa, S. Sato, Carbonization mechanisms of polyimide: methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons, Carbon 178 (2021) 58-80.
https://doi.org/10.1016/j.carbon.2021.02.090

Reprinted with permission. Copyright (2021) Elsevier.

102) S. Gohda*, H. Ono, Y. Yamada, Metal-free covalent triazine framework prepared from 2,4,6-tricyano-1,3,5-triazine through open-system and liquid-phase synthesis, Chem. Lett. 50 (2021) 1773-1777.
https://doi.org/10.1246/cl.210382

101) T. Kato, Y. Yamada*, Y. Nishikawa, T. Otomo, H. Sato, S. Sato, Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?, J. Mater. Sci. 56 (2021) 15798-15811. Selected as the finalist of Cahn Prize 2021
https://doi.org/10.1007/s10853-021-06283-5
Free to download because of the selection.--> "Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?

100) S. Kanazawa, Y. Yamada*, S. Gohda, S. Sato, Bottom-up synthesis of oxygen-containing carbon materials using a Lewis acid catalyst, J. Mater. Sci. 56 (2021) 15698-15717.
https://doi.org/10.1007/s10853-021-06284-4
Free for view only.--> "Bottom-up synthesis of oxygen-containing carbon materials using a Lewis acid catalyst"

99) S. Kanazawa, Y. Yamada*, S. Sato, Infrared spectroscopy of graphene nanoribbons and aromatic compounds with sp3C-H (methyl or methylene groups), J. Mater. Sci. 56 (2021) 12285-12314. Selected as a Journal Cover
https://doi.org/10.1007/s10853-021-06001-1

Free for view only.--> "Infrared spectroscopy of graphene nanoribbons and aromatic compounds with sp3C-H (methyl or methylene groups)"

98) J. Kim*, J. W. Han, Y. Yamada*, Heptagons in the basal plane of graphene nanoflakes analyzed by simulated X-ray photoelectron spectroscopy, ACS Omega 6 (2021) 2389-2395.
https://doi.org/10.1021/acsomega.0c05717

97) N. Diana, Y. Yamada*, S. Gohda, H. Ono, S. Kubo, S. Sato, Carbon materials with high pentagon density, J. Mater. Sci. 56 (2021) 2912-2943.
https://doi.org/10.1007/s10853-020-05392-x
Free for view only.--> "Carbon materials with high pentagon density"

96) S. Gohda*, M. Saito, Y. Yamada*, S. Kanazawa, H. Ono, S. Sato, Carbonization of phloroglucinol promoted by heteropoly acids, J. Mater. Sci. 56 (2021) 2944-2960.
https://doi.org/10.1007/s10853-020-05393-w
Free for view only.--> "Carbonization of phloroglucinol promoted by heteropoly acids"

95) J. Kim*, Y. Yamada*, S. Sato, Bromination reactivity of oxygen-terminated edges of graphene, J. Nanosci. Nanotechnol. 21 (2021) 3004-3009.
https://doi.org/10.1166/jnn.2021.19128

94) K. Nakazono, R. Takahashi, Y. Yamada, S. Sato*, Dehydration of 2,3-butanediol to produce 1,3-butadiene over Sc2O3 catalyst prepared through hydrothermal aging. Mol. Catal. 516 (2021) 111996.

93) T. Ozawa, L. Yu, Y. Yamada, S. Sato*, Isomerization of crotyl alcohol catalyzed by V2O5-modified silica, Chem. Lett. 50 (2021) 1635-1638.

92) Y. Li, D. Sun, X. Zhao, Y. Yamada, S. Sato, Control of coke deposition in solid acid catalysis through the doping of transition metal combined with the assistance of H2: a review, Appl. Catal. A: Gen. 626 (2021) 118340.

91) A. Matsuda, Y. Matsumura, Y. Yamada, S. Sato*, Vapor-phase dehydration of 1,4-butanediol to 1,3-butadiene over Y2Zr2O7 catalyst, Mol. Catal. 514 (2021) 111853.

90) Y. Matsumura, A. Matsuda, Y. Yamada, S. Sato*, Selective production of 1,3-butadiene from 1,3-butanediol over Y2Zr2O7 catalyst, Bull. Chem. Soc. Jpn 94 (2021) 1651-1658.

89) D. Yanase, T. Hara, F. Sato, Y. Yamada, S. Sato*, Vapor-phase hydrogenation of levulinic acid to -valerolactone over Cu-Ni alloy catalysts, Appl. Catal. A: Gen. 616 (2021) 118093.

88) Y. Matsumura, T. Kojima, Y. Yamada, S. Sato*, Preparative chemistry of calcia-stabilized ZrO2 for vapor-phase dehydration of 1,4-butanediol, Mol. Catal. 530 (2021) 111343.


2020
87) S. Gohda*, Y. Yamada*, M. Murata, M. Saito, S. Kanazawa, H. Ono, S. Sato, Bottom-up synthesis of highly soluble carbon materials, J. Mater. Sci. 55 (2020) 11808-11828.
https://doi.org/10.1007/s10853-020-04813-1
Free for view only.--> "Bottom-up synthesis of highly soluble carbon materials"

86) Y. Yamada*, S. Masaki, S. Sato, Brominated positions on graphene nanoribbon analyzed by infrared spectroscopy, J. Mater. Sci. 55 (2020) 10522-10542.
https://doi.org/10.1007/s10853-020-04786-1
Free for view only.--> "Brominated positions on graphene nanoribbon analyzed by infrared spectroscopy"

85) Y. Yamada*, S. Sato, Analysis of defective structures of carbon materials, Shokubai 62 (2020) 47-53.[Written in Japanese]
山田泰弘*, 佐藤智司, 炭素材料の欠陥構造解析, 触媒 62 (2020) 47-53.

84) A. Matsuda, Y. Matsumura, K. Nakazono, F. Sato, R. Takahashi, Y. Yamada, S. Sato*, Dehydration of biomass-derived butanediols over rare earth zirconate catalysts, Catalysts 10 (2020) 1392.

83) D. Yanase, R. Yoshida, S. Kanazawa, Y. Yamada, S. Sato*, Efficient formation of -valerolactone in the vapor-phase hydrogenation of levulinic acid over Cu-Co/alumina catalyst, Catal. Commun. 139 (2020) 105967.

82) D. Sun, T. Saito, S. Otsuka, T. Ozawa, Y. Yamada, S. Sato*, Selective hydrogenation of -valerolactone to 2-methyltetrahydrofuran over Cu/Al2O3 catalyst, Appl. Catal. A: Gen. 590 (2020) 117309.

81) D. Sun, Y. Li, C. Yang, Y. Su, Y. Yamada, S. Sato*, (Review) Production of 1,3-butadiene from biomass-derived C4 alcohols, Fuel Process. Technol. 197 (2020) 106193.


2019
80) T. Senda, Y. Yamada*, M. Morimoto, N. Nono, T. Sogabe, S. Kubo, S. Sato, Analyses of oxidation process for isotropic pitch-based carbon fiber using model compounds, Carbon 142 (2019) 311-326.
https://doi.org/10.1016/j.carbon.2018.10.026

Reprinted with permission. Copyright (2019) Elsevier.

79) D. Sun, R. Takano, Y. Yamada, S. Sato*, Vapor-phase isomerization of 3-pentanal over amorphous SiO2 catalyst, Appl. Catal. A: Gen. 576 (2019) 65-73.

78) D. Sun, Y. Yamada, S. Sato*, Amorphous SiO2 catalyst for vapor-phase aldol condensation of butanal, Appl. Catal. A: Gen. 570 (2019) 113-119.

77) S. Ohtsuka, T. Nemoto, R. Yotsumoto, Y. Yamada, F. Sato*, R. Takahashi, S. Sato*, Vapor-phase catalytic dehydration of butanediols to unsaturated alcohols over yttria-stabilized zirconia catalysts, Appl. Catal. A: Gen. 575 (2019) 48-57.

76) T. Nemoto, Y. Yamada, F. Sato, R. Takahashi, S. Sato*, Catalytic dehydration of 1,3-butanediol over oxygen-defected fluorite Yb2Zr2O7, Mol. Catal. 473 (2019) 110399.

75) D. Sun, T. Misu, Y. Yamada, S. Sato*, Advantages of using Cu/SiO2 catalyst for vapor-phase dehydrogenation of 1-decanol into decanal. Appl. Catal. A: Gen. 582 (2019) 117109.

2018
74) J. Kim*, N. Lee, M. Nodo, Y.H. Min, S. H. Noh, N. Kim, S. Jung, M. Joo, Y. Yamada*, Distinguishing zigzag and armchair edges on graphene nanoribbons by X-ray photoelectron and Raman spectroscopies, ACS Omega 3 (2018) 17789-17796.
https://doi.org/10.1021/acsomega.8b02744

73) Y. Yamada*, M. Kawai, H. Yorimitsu, S. Otsuka, M. Takanashi, S. Sato, Carbon materials with zigzag and armchair edges, ACS Appl. Mater. Interfaces 10 (2018) 40710-40739.
https://doi.org/10.1021/acsami.8b11022

Reprinted with permission. Copyright (2018) American Chemical Society.

72) S. M. Khan, H. Kitayama, Y. Yamada, S. Gohda, H. Ono, D. Umeda, K. Abe, K. Hata, T. Ohba*, High CO2 sensitivity and reversibility on nitrogen-containing polymer by remarkable CO2 adsorption on nitrogen sites, J. Phys. Chem. C 122 (2018) 24143-24149.
https://doi.org/10.1021/acs.jpcc.8b07420

71) T. Sasaki, Y. Yamada*, S. Sato, Quantitative analysis of zigzag and armchair edges on carbon materials with and without pentagons using infrared spectroscopy, Anal. Chem. 90 (2018) 10724-10731.
https://doi.org/10.1021/acs.analchem.8b00949

Reprinted with permission. Copyright (2018) American Chemical Society.

70) Y. Wang, D. Sun, Y. Yamada, S. Sato*, Selective production of 1,3-butadiene in the dehydration of 1,4-butanediol over rare earth oxides, Appl. Catal. A: Gen. 562 (2018) 11-18.

69) R. Yoshida, D. Sun, Y. Yamada, S. Sato*, Stable Cu-Ni/SiO2 catalysts prepared by using citric acid-assisted impregnation for vapor-phase hydrogenation of levulinic acid, Mol. Catal. 454 (2018) 70-76.

68) T. Tsuchiya, Y. Kajitani, K. Ohta, Y. Yamada, S. Sato*, Vapor-phase synthesis of piperidine over SiO2 catalysts, Catal. Commun. 110 (2018) 42-45.

2017
67) Y. Yamada*, S. Gohda, K. Abe, T. Togo, N. Shimano, T. Sasaki, H. Tanaka, H. Ono, T. Ohba, S. Kubo, T. Ohkubo, S. Sato, Carbon materials with controlled edge structures, Carbon 122 (2017) 694-701.
https://doi.org/10.1016/j.carbon.2017.07.012

Reprinted with permission. Copyright (2017) Elsevier.

66) H. Nishihara*, T. Hirota, K. Matsuura, M. Ohwada, N. Hoshino, T. Akutagawa, Y. Matsuo, J. Maruyama, Y. Hayasaka, H. Konaka, Y. Yamada, T. Kamimura, F. Tani, Synthesis of ordered carbonaceous frameworks from organic crystals, Nat. Commun. 8 (2017) 109.
https://doi.org/10.1038/s41467-017-00152-z

65) S. Tomii, M. Yamada, M. Mizuno, Y. Yamada*, T. Kojima, M. Kushida, M. Seki, Assembly of carbon nanotubes into microparticles with tunable morphologies using droplets in a non-equilibrium state, RSC Adv. 7(2017) 17773-17780.
https://doi.org/10.1039/C7RA01846K

64) H. Duan, M. Unno, Y. Yamada, S. Sato*, Adsorptive interaction between 1,5-pentanediol and MgO-modified ZrO2 catalyst in the vapor-phase dehydration to produce 4-penten-1-ol, Appl. Catal. A: Gen. 546 (2017) 96-102.

63) D. Sun, T. Saito, Y. Yamada, X. Chen, S. Sato*, Hydrogenation of γ-valerolactone to 1,4-pentanediol in a continuous flow reactor, Appl. Catal. A: Gen. 542 (2017) 289-295.

62) D. Sun, Y. Yamada, S. Sato*, W. Ueda, Glycerol as a potential renewable raw material for acrylic acid production, Critical Review, Green Chem. 19 (2017) 3186-3213.

61) H. Duan, T. Hirota, S. Ohtsuka, Y. Yamada, S. Sato*, Vapor-phase catalytic dehydration of 1,4-butanediol to 3-buten-1-ol over modified ZrO2 catalysts, Appl. Catal. A: Gen. 535(2017) 9-16.

60) H. Duan, Y. Yamada, S. Kubo, S. Sato*, Vapor-phase catalytic dehydration of 2,3-butanediol to 3-buten-2-ol over ZrO2 modified with alkaline earth metal oxides, Appl. Catal. A: Gen. 530 (2017) 66-74.

59) H. Duan, Y. Yamada, S. Sato*, Vapor-phase hydrogenation of acetoin and diacetyl into 2,3-butanediol over supported metal catalysts, Catal. Commun. 99 (2017) 53-56.

58) R. Yoshida, D. Sun, Y. Yamada, S. Sato*, G. J. Hutchings, Vapor-phase hydrogenation of levulinic acid to -valerolactone over Cu-Ni bimetallic catalysts, Catal. Commun. 97 (2017) 79-82.

57) D. Sun, S. Chiba, Y. Yamada, S. Sato*, Vapor-phase intramolecular aldol condensation of 2,5-hexanedione to 3-methylcyclopent-2-enone over ZrO2-supported Li2O catalyst, Catal. Commun. 92 (2017) 105-108.

56) D. Sun, S. Arai, H. Duan, Y. Yamada, S. Sato*, Vapor-phase dehydration of C4 unsaturated alcohols to 1,3-butadiene, Appl. Catal. A: Gen. 531 (2017) 21-28.

55) D. Sun, A. Ohkubo, K. Asami, T. Katori, Y. Yamada, S. Sato*, Vapor-phase hydrogenation of levulinic acid and methyl levulinate to -valerolactone over non-noble metal-based catalysts, Mol. Catal. 437 (2017) 105-113.

2016
54) T. Tanabe, Y. Yamada*, J. Kim, M. Koinuma, S. Kubo, N. Shimano, S. Sato, Knoevenagel condensation using nitrogen-doped carbon catalysts, Carbon 109 (2016) 208-220.
https://doi.org/10.1016/j.carbon.2016.08.003

Reprinted with permission. Copyright (2016) Elsevier.

53) Y. Yamada*, S. Matsuo, K. Abe, S. Kubo, S. Sato, Selective doping of nitrogen into carbon materials without catalysts, J. Mater. Sci. 51(19) (2016) 8900-8915.
https://doi.org/10.1007/s10853-016-0142-y
Free for view only.--> Selective doping of nitrogen into carbon materials without catalysts

52) A. Fujimoto, Y. Yamada*, M. Koinuma, S. Sato, Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials, Anal. Chem. 88 (2016) 6110-6114.
https://doi.org/10.1021/acs.analchem.6b01327

Reprinted with permission. Copyright (2016) American Chemical Society.

51) D. Sun, Y. Yamada, S. Sato*, S. Suganuma, N. Katada, Production of aldehydes from 1,2-alkanediols over silica-supported WO3 catalyst, Appl. Catal. A: Gen. 526 (2016) 164-171.

50) D. Sun, E. Kitamura, Y. Yamada, S. Sato*, Efficient formation of nitriles in the vapor-phase catalytic dehydration of aldoximes, Green Chem. 18 (2016) 3389-3396.

49) K. Ohta, Y. Yamada, S. Sato*, Dehydration of 5-amino-1-pentanol over rare earth oxides, Appl. Catal. A Gen. 517 (2016) 73-80.

48) D. Sun, Y. Yamada, S. Sato*, W. Ueda, Glycerol hydrogenolysis into useful C3 chemicals, Review Article, Appl. Catal. B: Environ. 193 (2016) 75-92.

47) D. Sun, S. Moriya, Y. Yamada, S. Sato*, Vapor-phase self-aldol condensation of butanal over Ag-modified TiO2, Appl. Catal. A: Gen. 524 (2016) 8-16.

46) D. Sun, Y. Takahashi, Y. Yamada, S. Sato*, Efficient formation of angelica lactones in a vapor-phase conversion of levulinic acid, Appl. Catal. A: Gen. 526 (2016) 62-69.

45) H. Duan, Y. Yamada, S. Sato*, Future prospect of the production of 1,3-butadiene from butanediols, Chem. Lett. 45 (2016) 1036-1047.

2015
44) Y. Yamada*, S. Sato, Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry (Review by awardee), Tanso 269 (2015) 181-189.
計算化学を用いたX線光電子分光分析による炭素材料の構造解析, 2015, 炭素 2015, 269, 181-189.

43) J. Kim, Y. Yamada*, M. Kawai, T. Tanabe, S. Sato, Spectral change of simulated X-ray photoelectron spectroscopy from graphene to fullerene, J. Mater. Sci. 50 (2015) 6739-6747.
https://doi.org/10.1007/s10853-015-9229-0
Free for view only.-->Spectral change of simulated X-ray photoelectron spectroscopy from graphene to fullerene.

42) J. Kim, Y. Yamada*, R. Fujita, S. Sato, Bromination of graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges, J. Mater. Sci. 50 (2015) 5183-5190.
https://doi.org/10.1007/s10853-015-9066-1
Free for view only.-->Bromination of graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges

41) D. Sun, J. Wang, Y. Yamada, S. Sato*, Cyclodehydration of diethylene glycol over Ag-modified Al2O3 catalyst, Appl. Catal. A: Gen. 505 (2015) 422-430.

40) D. Sun, Y. Yamada, S. Sato*, Efficient production of propylene in the catalytic conversion of glycerol, Appl. Catal. B: Environ. 174 (2015) 13-20.

39) H. Duan, Y. Yamada, S. Sato*, Efficient production of 1,3-butadiene in the catalytic dehydration of 2,3-butanediol, Appl. Catal. A: Gen. 491 (2015) 163-169.

2014
38) Y. Yamada*, Y. Suzuki, H. Yasuda, S. Uchizawa, K. Hirose-Takai, Y. Sato, K. Suenaga, S. Sato, Functionalized graphene sheets coordinating metal cations, Carbon 75 (2014) 81-94.
https://doi.org/10.1016/j.carbon.2014.03.036

Fig. Three types of interactions between metal cations and ammonia-treated graphene sheets. Type A: monovalent alkali metal cations such as Li+, Na+, and K+, divalent alkali-earth metal cations such as Mg2+, Ca2+, and Sr2+, divalent transition metal cations such as Mn2+, and the other divalent metal cation such as Zn2+. Type B: trivalent transition metal cations such as Cr3+ and Fe3+. Type C: divalent transition metal cations such as Co2+, Ni2+, and Cu2+.
Reprinted with permission. Copyright (2014) Elsevier.


37) J. Kim, Y. Yamada*, S. Sato, Oxygen migration and selective CO and CO2 formation from epoxidized fullerenes, J. Phys. Chem. C 118(13) (2014) 7085-7093.
https://doi.org/10.1021/jp412034h

                  Fig. Pyrolysis of epoxidized fullerenes (Calculated by Gaussian03). Reprinted with permission. Copyright (2014) American Chemical Society.

36) J. Kim, Y. Yamada*, Y. Suzuki, J. Ciston, S. Sato, Pyrolysis of epoxidized fullerenes analyzed by spectroscopies, J. Phys. Chem. C 118(13) (2014) 7076-7084.
https://doi.org/10.1021/jp4120332

                  Fig. Pyrolysis of epoxidized fullerenes (Analyzed by XPS, IR, and MS). Reprinted with permission. Copyright (2014) American Chemical Society.


35) Y. Yamada*, K. Murota, R. Fujita, J. Kim, A. Watanabe, M. Nakamura, S. Sato, K. Hata, E. Peter, J. Ciston, C. Song, K. Kim, W. Regan, W. Gannett, A. Zettl, Subnanometer vacancy defects introduced on graphene by oxygen gas, J. Am. Chem. Soc. 136(6) (2014) 2232-2235.
https://doi.org/10.1021/ja4117268

          Fig. Sub-nanometer vacancy defects introduced on graphene by oxygen gas. Reprinted with permission. Copyright (2014) American Chemical Society.

34) Y. Yamada*, J. Kim, S. Matsuo, S. Sato, Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy, Carbon 70 (2014) 59-74.
https://doi.org/10.1016/j.carbon.2013.12.061

Fig. 1 Modeled graphene with nitrogen-containing functional groups. Reprinted with permission. Copyright (2014) Elsevier.


Fig. 2 Simulated C1s XPS spectra of Fig. 1 . Reprinted with permission. Copyright (2014) Elsevier.

Fig. 3 Simulated C1s XPS spectra of Fig. 1 after applying asymmetric Voigt function. Reprinted with permission. Copyright (2014) Elsevier.


33) D. Sun, Y. Yamada, S. Sato*, Production of propanal from 1,2-propanediol over silica-supported WO3 catalyst, Appl. Catal. A-Gen. 487 (2014) 234-241.
32) H. Duan, Y. Yamada, S. Sato*, Selective dehydration of 2,3-butanediol to 3-buten-2-ol over ZrO2 modified with CaO, Appl. Catal. A-Gen. 487 (2014) 226-233.
31) H. Duan, Y. Yamada, S. Sato*, Vapor-phase Catalytic Dehydration of 2,3-butanediol into 3-buten-2-ol over Sc2O3, Chem. Lett. 43 (2014) 1773-1775.(Open Access)
30) D. Sun, R. Narita, F. Sato, Y. Yamada, S. Sato*, Catalytic dehydration of 1,2-propanediol into propanal over Ag-modified silica-alumina, Chem. Lett. 43 (2014) 450-452.
29) H. Duan, D. Sun, Y. Yamada, S. Sato*, Dehydration of 2,3-butanediol into 3-buten-2-ol catalyzed by ZrO2, Catal. Commun. 48 (2014) 1-4.
28) Y. Morino, Y. Yamada, S. Sato*, Dehydration of 3-methyl-1,3-butanediol over Al2O3 modified with carbon, Appl. Catal. A-Gen. 475 (2014) 147-154.
27) D. Sun, Y. Yamada, S. Sato*, Effect of Ag loading on Cu/Al2O3 catalyst in the production of 1,2-propanediol from glycerol, Appl. Catal. A-Gen. 475 (2014) 63-68.
26) F. Sato, S. Sato*, Y. Yamada, M. Nakamura, A. Shiga, Acid-base concerted mechanism in the dehydration of 1,4-butanediol over bixbyite rare earth oxide catalysts, Catal. Today 226 (2014) 124-133.


2013
25) Y. Yamada*, H. Yasuda, K. Murota, M. Nakamura, T. Sodesawa, S. Sato, Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy, J. Mater. Sci. 48(23) (2013) 8171-8198.
https://doi.org/10.1007/s10853-013-7630-0
Free for view only.--> Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy.


24) S. Sato*, F. Sato, H. Gotoh, Y. Yamada, Selective dehydration of alkanediols into unsaturated alcohols over rare earth oxide catalysts, Review article, ACS Catal. 3 (2013) 721-734.
23) S. Sato*, J. Igarashi, Y. Yamada, Stable vapor-phase conversion of tetrahydrofurfuryl alcohol into 3,4-2H-dihydropyran, Appl. Catal. A-Gen. 453 (2013) 213-218.
22) D. Sun, F. Sato, Y. Yamada, S. Sato*, Solvent-free Diels-Alder reaction in a closed batch system, Bull. Chem. Soc. Jpn. 86 (2013) 276-282.
21) D. Sun, F. Sato, S. Yamauchi, Y. Yamada, S. Sato*, Liquid-phase cyclodimerization of 1,3-butadiene in a closed batch system, Bull. Chem. Soc. Jpn. 86 (2013) 529-533.


2012
20) Y. Yamada*, T. Tanaka, K. Machida, S. Suematsu, K. Tamamitsu, H. Kataura, H. Hatori, Electrochemical behavior of metallic and semiconducting single-wall carbon nanotubes for electric double-layer capacitor, Carbon 50(3) (2012) 1422-1424.
https://doi.org/10.1016/j.carbon.2011.09.062

Fig. UV-vis spectra of metallic/semicond. CNTs    Fig CVs of metallic and semiconducting SWCNTs
Reprinted with permission. Copyright (2012) Elsevier.

19) S. Sato*, D. Sakai, F. Sato, Y. Yamada, Vapor-phase dehydration of glycerol into hydroxyacetone over silver catalyst, Chem. Lett. 41 (2012) 965-966.
18) S. Sato*, N. Sato, Y. Yamada, Stable vapor-phase catalytic conversion of pinacolone into 2,3-dimethyl-1,3-butadiene, Chem. Lett. 41 (2012) 831-833.
17) F. Sato, Y. Yamada, S. Sato*, Preparation of Er2O3 nanorod catalyst without using organic additive and its application to catalytic dehydration of 1,4-butanediol, Chem. Lett. 41 (2012) 593-594.

2011
16) Y. Yamada*, M. Miyauchi, J. Kim, K. H. Takai, Y. Sato, K. Suenaga, T. Ohba, T. Sodesawa, S. Sato, Exfoliated graphene ligands stabilizing copper cations, Carbon 49(10) (2011) 3375-3378.
https://doi.org/10.1016/j.carbon.2011.03.056

Fig HRTEM images and ADF- STEM images of copper coordinated exfoliated graphene sheets. Reprinted with permission. Copyright (2011) Elsevier.

15) Y. Yamada, M. Segawa, F. Sato, T. Kojima, S. Sato*, Catalytic performance of rare earth oxides in ketonization of acetic acid, J. Mol. Catal. A: Chem. 346 (2011) 79-86.
14) K. Abe, T. Okada, Y. Yamada, S. Sato*,Vapor-phase catalytic dehydration of terminal diols, J. Catal. Today 164(1) (2011) 419-424.


2010
13) Y. Yamada, O. Kimizuka, K. Machida, S. Suematsu, K. Tamamitsu, S. Saeki, Y. Yamada, N. Yoshizawa, O. Tanaike, J. Yamashita, F. Don, K. Hata, H. Hatori*, Hole-opening of carbon nanotubes and their capacitor performance, Energy Fuels, 24(6) (2010) 3373-3377.
https://doi.org/10.1021/ef9015203

Fig Effects of oxidation of SWCNT vs ID/IG.   Fig CVs of SWCNTs before and after heat treatment. Reprinted with permission. Copyright (2010) American Chemical Society.

12) H. Gotoh, Y. Yamada, S. Sato*, Dehydration of 1,3-butanediol over rare earth oxides, Appl. Catal. A, 377(1-2) (2010) 92-98.

2009
11) K. Mori, Y. Yamada, S. Sato, Catalytic dehydration of 1,2-propanediol into propanal, Appl. Catal. A 366(2) (2009) 304-308.
10) Y. Yamada, O. Kimizuka, O. Tanaike, K. Machida, S. Suematsu, K. Tamamitsu, S. Saeki, Y. Yamada, H. Hatori, Capacitor properties and pore structure of single- and double- walled carbon nanotubes, Electrochem. Solid-State Lett. 12(3) (2009) K14-K16.

2008
9) Y. Yamada, D. D. L. Chung, Three-dimensional microstructuring of carbon by thermoplastic spacer evaporation during pyrolysis, Carbon 46(13) (2008) 1765-1772.
https://doi.org/10.1016/j.carbon.2008.07.031

Fig A SEM image of a carbon microbridge on a substrate.Reprinted with permission. Copyright (2008) Elsevier.

8) Y. Yamada, D. D. L. Chung, Epoxy-based carbon films with high electrical conductivity attached to an alumina substrate, Carbon, 46(13) (2008) 1798-1801.
https://doi.org/10.1016/j.carbon.2008.07.001

7) S. Han, J. T. Lin, Y. Yamada, D. D. L. Chung, Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer-matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black, Carbon 46(3)(2008)1060-1071.
https://doi.org/10.1016/j.carbon.2008.03.023

6) Y.-C. Liu, Y. Aoyagi&, D. D. L. Chung, Development of epoxy-based electrets, J. Mater. Sci., 43(5) (2008) 1650-1663.
https://doi.org/10.1007/s10853-007-2391-2
Free for view only.--> Development of epoxy-based electrets.

5) Y. Aoyagi&, D. D. L. Chung, Antioxidant-based phase-change thermal interface materials with high thermal stability, J. Electron. Mater. 37(4)(2008)448-461.
https://doi.org/10.1007/s11664-007-0376-1
Free for view only.--> Antioxidant-based phase-change thermal interface materials with high thermal stability.

2005-2007
4) Y. Aoyagi&, D. D. L. Chung, Effects of antioxidants and the solid component on the thermal stability of polyolester-based thermal pastes, J. Mater. Sci. 42(7) (2007) 2358-2375.
https://doi.org/10.1007/s10853-007-1600-3
Free for view only.--> Effects of antioxidants and the solid component on the thermal stability of polyolester-based thermal pastes.

3) C.-K. Leong, Y. Aoyagi&, D. D. L. Chung, Carbon-black pastes as coatings for improving thermal gap-filling materials, Carbon, 44(3) (2006) 435-440.
https://doi.org/10.1016/j.carbon.2005.09.002

2) Y. Aoyagi&, C.-K. Leong, D. D. L. Chung, Polyol-based phase-change thermal interface materials, J. Electron. Mater. 35(3) (2006) 416-424.
https://doi.org/10.1007/BF02690528
Free for view only.--> Polyol-based phase-change thermal interface materials.

1) C.-K. Leong, Y. Aoyagi&, D. D. L. Chung, Carbon-black thixotropic thermal pastes for improving thermal contacts, J. Electron. Mater. 34(10) (2005) 1336-1341.
https://doi.org/10.1007/s11664-005-0259-2
Free for view only.--> Carbon-black thixotropic thermal pastes for improving thermal contacts.


Ph.D. Dissertation of students:
2) "構造制御されたボトムアップ型ナノ炭素材料の開発とその応用", Ph.D. Dissertation, Chiba University, Feb 2021.
1) Jungpil Kim, "Introduction and Structural Characterizations of Defects on Nano Carbon Materials", Ph.D. Dissertation, Chiba University, Jan 2015.

Ph.D. Dissertation of Prof. Yasuhiro Yamada (previously known as Yasuhiro Aoyagi):
Yasuhiro Aoyagi, Carbon and Related Materials for Thermal and Electrical Applications, Ph.D. Dissertation, 2008. University at Buffalo, The State University of New York, U.S.A.

Published book:
1)山田泰弘、「炭素材料の研究開発動向2016」、第1編 炭素材料の最新解析技術、1.3 X線光電子分光分析と計算を利用した炭素材料の欠陥構造解析、CPC研究会、2016年、分担執筆(pp.25-32 担当)
2)山田泰弘、X線光電子分光分析による炭素材料の構造解析、「炭素材料科学の進展」、日本学術振興会 炭素材料 第117委員会、2018年10月、(全196頁)分担執筆(pp.39-40 担当)
3)山田泰弘、「炭素材料の研究開発動向2021」、第1編 炭素化と炭素材料の新展開、1.1 炭素材料の構造制御と構造解析、CPC研究会、2021年6月28日、(全172頁)分担執筆(pp.5-515 担当)
4)山田泰弘、応用編 1 章 無機材料 3 節 炭素材料、東京大学名誉教授 澤田嗣郎 監修『先端の分析法 第2版』(Cutting-edge Analytical Techniques, 2nd Edition)、株式会社エヌ・ティー・エス(NTS Inc.)、2022年1月29日.(全1072頁)分担執筆(pp.591-597 担当). https://www.nts-book.com/978-4-86043-737-4/

Newspaper:
山田泰弘、炭の構造制御・解析の技術に迫る、読売新聞(鹿児島県全域版)、2024年1月30日、p.24

Other publications and reports:
27)"Report for 49th conference of Japanese carbon society" Tanso (Journal of The Carbon Society of Japan) 303 (2023) 36-44.
26)"Report for 48th conference of Japanese carbon society" Tanso (Journal of The Carbon Society of Japan) 301 (2022) 38-51.
25)"Report for 46th conference of Japanese carbon society" Tanso (Journal of The Carbon Society of Japan) 281 (2020) 17-25.
24)"Report for Carbon 2019 conference" Tanso (Journal of The Carbon Society of Japan) 289 (2019) 175-180.
23)"Report for 2018 Fall Meeting of Korean Carbon Society" Tanso (Journal of The Carbon Society of Japan) 286 (2019) 42-43.
22)"Report for 44th conference of Japanese carbon society" Tanso (Journal of The Carbon Society of Japan) 281 (2018) 22-29.
21)"Report for 43rd conference of Japanese carbon society" Tanso (Journal of The Carbon Society of Japan) 276 (2017) 26.
20)"Syntheses and analyses of structurally controlled boron-containing graphene", Report of The Mazda Foundation, 28 (2016) 170-177.
19)"Introduction of our laboratory" Tanso (Journal of The Carbon Society of Japan) 272 (2016) 64-65.
18)"Report for 53th summer seminar of Japanese carbon society" Tanso (Journal of The Carbon Society of Japan) 270 (2016) 276-283.
17)"Synthesis of Nitrogen-Containing Graphene and its Visualization"(written in Japanese), Annual Report No.28 2014, The Murata Science Foundation, Japan
16)"Research Encouragement Prize", Tanso (Journal of The Carbon Society of Japan) 266 (2015) Kaikoku 7-8.
15)Report of attendance at the international conference (Carbon 2014)(written in Japanese), Marubun Research Promotion Foundation, Japan
14)"Topics -Structural control of defects on nanocarbon materials and their analysis" (written in Japanese), Shokubai (Journal of Catalysis Society of Japan), 56(3) (2014) 193.
13)"Analyses of defect structure of nano carbon materials by X-ray photoelectron spectroscopy and density functional theory calculation (2013)"(written in Japanese), Chemical Evaluation and Research Institute, Japan.
12)Analysis of defects in nanocarbon using aberration-corrected transmission electron microscopy(written in Japanese), Annual Report No.27 2013, The Murata Science Foundation, Japan
11)Controlling the size and quantity of defects on carbon materials(written partly in English and mostly in Japanese), Kakenhi Grant(Wakate B) Report 2012, Japan Society for the Promotion of Science (JSPS), Japan
10)Report of attendance at the international conference (Carbon 2012)(written in Japanese), Marubun Research Promotion Foundation, Japan
9)Report of attendance at the international conference (Carbon 2011)(written in Japanese), Marubun Research Promotion Foundation, Japan
8)"Carbon 2011 Report"(written in Japanese), Tanso (Journal of Japanese Carbon Society), 250 (2011) 274.
7)Report of attendance at the international conference (Carbon 2010)(written in Japanese), Marubun Research Promotion Foundation, Japan
6)"Forum -Carbon Materials-" (written in Japanese), Shokubai (Journal of Catalysis Society of Japan), 52 (3)(2010)226-227.
5)"Introduction of book -Crosslinking and Degradation of Polymers-"(written in Japanese), Shokubai (Journal of Catalysis Society of Japan), 51(8) (2009) 623-624.
4)"Recent Doctoral Thesis", Tanso (Journal of The Carbon Society of Japan) 233(2008)202-203.
3)"Carbon and Related Materials for Thermal and Electrical Applications" Ph.D. Dissertation, 2008. University at Buffalo, State University of New York, U.S.A.
2)"Carbon 2007 Report"(written in Japanese), Tanso (Journal of The Carbon Society of Japan) 230 (2007) 383.
1)"From newcomers"(written in Japanese), Tanso (Journal of The Carbon Society of Japan) 230 (2007) 381.



Patents:
1)Antioxidants for phase change ability and thermal stability enhancement, Inventors (Deborah Duen Ling Chung, Yasuhiro Aoyagi), United States Patent Application, US20090184283. Publication Date: 07/23/2009. Filling Date: 01/18/2008.
2)特開2018-203555、特願2017-108168、炭素材料の製造方法、山田泰弘、佐藤智司、大場友則、島野紀道、藤郷貴章、梅田大地、阿部功幹、郷田隼、小野博信 (出願日 平成29年5月31日)
3)特許第7254544号、特開2020-70227(P2020-70227A)、特願2019-19610、高く構造制御された有機無機複合体、山田泰弘、村田昌駿、齋藤誠仁、佐藤智司、郷田隼、小野博信 (出願日 平成30年9月14日)(公開日 令和2年5月7日)(登録日 令和5年3月31日)
4)特許第7254545号、特開2020-70228(P2020-70228A)、特願2019-19612、高く構造制御された有機無機複合体、山田泰弘、村田昌駿、齋藤誠仁、佐藤智司、郷田隼、小野博信 (出願日 平成31年2月6日)(公開日 令和2年5月7日) (登録日 令和5年3月31日)
5)特願2018-172447、可溶性有機無機複合体、山田泰弘、村田昌駿、齋藤誠仁、佐藤智司、郷田隼、小野博信 (出願日 平成30年9月14日)
6)特願2018-172449、炭素材料含有材料の製造方法、山田泰弘、村田昌駿、齋藤誠仁、佐藤智司、郷田隼、小野博信 (出願日 平成30年9月14日)
7)特許第7215673号、特開2020-083692、特願2018-219200、炭素材料膜及びその製造方法、山田泰弘、ノルアマリナ ディアナ ビンティ ナサルッディン、郷田隼、小野博信(出願日 平成30年11月22日、登録日 令和5年1月23日)
8) 特願2019-104931、炭素材料、炭素材料の製造方法、炭素材料組成物、および潤滑性向上剤 郷田隼、山田泰弘(出願日 令和1年6月5日)(拒絶査定)
9)特願2019-104934、抗酸化剤および抗酸化剤用炭素材料の製造方法、山田泰弘、郷田隼(出願日 令和1年6月5日)(基礎出願)
10)特許第7381005号 、特開2020-200435、特願2019-145098、抗酸化剤および抗酸化剤用炭素材料の製造方法、山田泰弘、郷田隼(出願日 令和1年8月7日)(公開日 令和1年12月17日)(登録日 令和5年11月7日)
11) 国際特許公開 WO2020/054833 (PCT/JP2019/036037 出願2019年9月13日) Y. Yamada, M. Murata, M. Saito, S. Sato, S. Gohda, H. Ono, “Carbon matter-containing material production method, carbon matter-containing materials, and soluble organic-inorganic composite”, 国際公開日(19.03.2020)
12)特許第7426216号、特願2019-214644、炭素材料の製造方法および炭素材料、山田泰弘、金澤脩平、郷田隼(出願日令和 1年11月27日)(公開日 令和3年6月3日)(登録日 令和6年1月24日)
13)特許第7437924号、特開2021-88480、特願2019-219340、炭素材料の製造方法、炭素材料、炭素材料含有材料の製造方法、炭素材料含有材料、および有機無機複合体(届出時:炭素材料の製造方法、炭素材料、炭素材料含有材料の製造方法、炭素材料含有材料、および可溶性有機無機複合体)、山田泰弘、村田昌駿、齋藤誠仁、佐藤智司、郷田隼、小野博信(出願日 令和1年12月4日)(公開日 令和3年6月10日)(登録日 令和6年2月15日)
14)特許第7407422号、特開2021-161009、特願2020-067150、フラン環を選択的に導入した含酸素炭素材料の製造方法、山田泰弘、長岡洋斗、郷田隼(出願日 令和2年4月3日)(公開日 2021年10月11日)(登録日 令和5年12月21日)
15)特許第7442133号、特開2021-161010、特願2020-067151、ベーサル窒素を選択的に導入した含窒素炭素材料およびその製造方法、山田泰弘、佐藤颯斗、郷田隼(出願日 令和2年4月3日)(公開日 2021年10月11日)(登録日 令和6年2月22日)
16)特願2020-067152、ピリジニック窒素を選択的に導入した含窒素炭素材料の製造方法、山田泰弘、川合崚平、郷田隼(出願日 令和2年4月3日)
17) 特開2021-165221、特願2020-195781、ピリジニック窒素を選択的に導入した含窒素炭素材料の製造方法、山田泰弘、川合崚平、田口大成、大坪尚人、郷田隼(出願日 令和2年11月26日)(公開日 2021年10月14日)
18)特開2023-056944、特願2021-166458、含窒素炭素材料の製造方法、山田泰弘、大坪尚人、久野一心、佐藤有紗、根岸佑衣、安田尭史、郷田隼 (出願日 令和3年10月8日)(公開日2023年4月20日)
19)特願2021-190446、窒素含有炭素材料及びその製造方法、山田泰弘、川合崚平、鈴木崚伸、田口廣臣 (出願日 令和3年11月24日)
20)特許(USA)、出願番号: 18/058,690, NITROGEN-CONTAINING CARBON MATERIAL AND METHOD FOR PRODUCING SAME, Yasuhiro Yamada, Ryouhei Kawai, Ryoushin Suzuki, Hiroomi Taguchi (出願日 令和4年11月23日)
21) 特願2023-077731、ピリジニック窒素を選択的に導入した含窒素炭素材料の製造方法、山田泰弘、山本うらら、郷田隼 (出願日 令和5年5月10日)
* : Corresponding author
& : Previous last name


受賞歴:
2023年11月29日、炭素材料学会 学術賞、炭素材料の構造制御と高精度構造解析
2016年10月27日、千葉大学 先進科学賞、ナノカーボン材料の欠陥構造解析
2016年7月14日、The Brian Kelly Award (The British Carbon Group, Royal Society of Chemistry)、 Review for analyses of defects in carbon materials using X-ray photoelectron spectroscopy and computation
2014年12月9日、炭素材料学会 研究奨励賞、X線光電子分光分析によるグラフェンの欠陥構造解析

----- Updated in April 2022 -----